These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synaptic activation of presynaptic glutamate transporter currents in nerve terminals. Author: Palmer MJ, Taschenberger H, Hull C, Tremere L, von Gersdorff H. Journal: J Neurosci; 2003 Jun 15; 23(12):4831-41. PubMed ID: 12832505. Abstract: Glutamate uptake by high-affinity transporters is responsible for limiting the activation of postsynaptic receptors and maintaining low levels of ambient glutamate. The reuptake process generates membrane currents, which can be activated by synaptically released glutamate in glial cells and some postsynaptic neurons. However, less is known about presynaptic transporter currents because the small size of synaptic boutons precludes direct recordings. Here, we have recorded from two giant nerve terminals: bipolar cell synaptic terminals in goldfish retina and the calyx of Held in rat auditory brainstem. Exocytosis was evoked by brief depolarizations and measured as an increase in membrane capacitance. In isolated bipolar cell terminals, exocytosis was associated with an anion (NO3- or Cl-) current. The current peaked 2.8 msec after the start of the depolarization and decayed with a mean time constant of 8.5 msec. It was inhibited by the nontransportable glutamate transporter antagonist sc-threo-beta-benzyloxyaspartate (TBOA) but was insensitive to the GLT1/EAAT2 subtype-selective antagonist dihydrokainate and was affected by extracellular pH buffering. A TBOA-sensitive anion current was also evoked by application of exogenous glutamate to bipolar cell terminals. The large single-channel conductance, derived from noise analysis, and previous immunolocalization studies suggest that synaptically released glutamate activates EAAT5-type transporters in bipolar cell terminals. In contrast, neither exocytosis nor exogenous glutamate evoked a transporter current in the calyx of Held. Glutamate transporter currents with rapid kinetics are therefore identified and characterized in bipolar cell terminals, providing a valuable system for investigating the function and modulation of presynaptic glutamate transporters.[Abstract] [Full Text] [Related] [New Search]