These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Nitric oxide decreases renal medullary Na+, K+-ATPase activity through cyclic GMP-protein kinase G dependent mechanism. Author: Bełtowski J, Marciniak A, Wójcicka G, Górny D. Journal: J Physiol Pharmacol; 2003 Jun; 54(2):191-210. PubMed ID: 12832721. Abstract: The aim of this study was to investigate the effect of nitric oxide on renal Na+,K(+)-ATPase and ouabain-sensitive H+,K(+)-ATPase activities. The study was performed in male Wistar rats. The investigated substances were infused under general anaesthesia into abdominal aorta proximally to the renal arteries. The activity of ATPases was assayed in isolated microsomal fraction. NO donor, S-nitroso-N-acetylpenicillamine (SNAP), infused at doses of 10(-7) and 10(-6)mol/kg/min decreased medullary Na+,K(+)-ATPase activity by 29.4% and 45.2%, respectively. Another NO donor, spermine NONOate, administered at the same doses reduced Na+,K(+)-ATPase activity in the renal medulla by 31.7% and 46.5%, respectively. Neither of NO releasers had any effect on Na+,K(+)-ATPase in the renal cortex and on either cortical or medullary ouabain-sensitive H+,K(+)-ATPase. Infusion of NO precursor, L-arginine (100 micromol/kg/min), decreased medullary Na+,K(+)-ATPase activity by 32.2%, whereas inhibitor of nitric oxide synthase, L-NAME (10 nmol/kg/min), increased this activity by 20.7%. The effect of synthetic NO donors was mimicked by 8-bromo-cGMP and blocked by inhibitors of soluble guanylate cyclase, ODQ or methylene blue, as well as by specific inhibitor of protein kinase G, KT5823. In addition, inhibitory effect of either SNAP or 8-bromo-cGMP on medullary Na+,K(+)-ATPase was abolished by 17-octadecynoic acid (17-ODYA), which inhibits cytochrome P450-dependent metabolism of arachidonic acid. These data suggest that NO decreases Na+,K(+)-ATPase activity in the renal medulla through the mechanism involving cGMP, protein kinase G, and cytochrome P450-dependent arachidonate metabolites. In contrast, NO has no effect on Na+,K(+)-ATPase in the renal cortex and on either cortical or medullary ouabain-sensitive H+,K(+)-ATPase.[Abstract] [Full Text] [Related] [New Search]