These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Immunohistochemical investigation on the presence of chondroitin sulfate in calcification nodules of epiphyseal cartilage. Author: Bonucci E, Silvestrini G. Journal: Eur J Histochem; 1992; 36(4):407-22. PubMed ID: 1283829. Abstract: Chondroitin sulfate localization in mouse epiphyseal cartilage was studied using CS-56 monoclonal antibody immunospecific for the glycosaminoglycan portion of the molecule. For light and fluorescence microscopy, decalcified specimens were embedded in paraffin, Lowicryl, or were frozen and cryostat-sectioned, and the antigen-antibody reaction was demonstrated by treating sections with IgM-peroxidase, IgM-alkaline phosphatase, or IgM-fluorescein conjugates. For electron microscopy, decalcified and undecalcified specimens were embedded in Lowicryl; ultrathin sections from undecalcified specimens were decalcified by flotation on EDTA; sections from both types of specimens were treated with IgM-immunogold conjugate for demonstration of CS-56 reaction. Before immunoreaction, part of all decalcified sections were digested with Streptomyces or testicular hyaluronidase. Control sections were treated with either mouse and goat non-immune serum, or mouse monoclonal antiserum to human dendritic reticulum cells. Both light and electron microscopy show CS-56 reaction with cytoplasmic components of maturing and hypertrophic chondrocytes. Under the light microscope, immunoreaction was not visible in calcified matrix, and was visible in uncalcified matrix only after hyaluronidase digestion. Under the electron microscope, it was evident both in uncalcified and calcified matrix, although the latter showed few immunogold particles, usually placed on areas which appeared incompletely calcified. Gold particles were chiefly distributed at the periphery of calcification nodules and fully calcified matrix. These results show that CS-56, besides reacting with cytoplasm of maturing and hypertrophic chondrocytes, binds to crystal ghosts and other components of cartilage matrix, immunoreactivity decreasing as calcification increases. This suggests that chondroitin sulfate molecules are either degraded during calcification, or segregated into macromolecular complexes, or both degraded and segregated. The second possibility is supported by the increase of immunosensitivity induced by hyaluronidase digestion.[Abstract] [Full Text] [Related] [New Search]