These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Identification of Cryptosporidium spp. oocysts in United Kingdom noncarbonated natural mineral waters and drinking waters by using a modified nested PCR-restriction fragment length polymorphism assay.
    Author: Nichols RA, Campbell BM, Smith HV.
    Journal: Appl Environ Microbiol; 2003 Jul; 69(7):4183-9. PubMed ID: 12839797.
    Abstract:
    We describe a nested PCR-restriction fragment length polymorphism (RFLP) method for detecting low densities of Cryptosporidium spp. oocysts in natural mineral waters and drinking waters. Oocysts were recovered from seeded 1-liter volumes of mineral water by filtration through polycarbonate membranes and from drinking waters by filtration, immunomagnetizable separation, and filter entrapment, followed by direct extraction of DNA. The DNA was released from polycarbonate filter-entrapped oocysts by disruption in lysis buffer by using 15 cycles of freeze-thawing (1 min in liquid nitrogen and 1 min at 65 degrees C), followed by proteinase K digestion. Amplicons were readily detected from two to five intact oocysts on ethidium bromide-stained gels. DNA extracted from Cryptosporidium parvum oocysts, C. muris (RN 66), C. baileyi (Belgium strain, LB 19), human-derived C. meleagridis, C. felis (DNA from oocysts isolated from a cat), and C. andersoni was used to demonstrate species identity by PCR-RFLP after simultaneous digestion with the restriction enzymes DraI and VspI. Discrimination between C. andersoni and C. muris isolates was confirmed by a separate, subsequent digestion with DdeI. Of 14 drinking water samples tested, 12 were found to be positive by microscopy, 8 were found to be positive by direct PCR, and 14 were found to be positive by using a nested PCR. The Cryptosporidium species detected in these finished water samples was C. parvum genotype 1. This method consistently and routinely detected >5 oocysts per sample.
    [Abstract] [Full Text] [Related] [New Search]