These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Physiological responses to indoor rock-climbing and their relationship to maximal cycle ergometry. Author: Sheel AW, Seddon N, Knight A, McKenzie DC, R Warburton DE. Journal: Med Sci Sports Exerc; 2003 Jul; 35(7):1225-31. PubMed ID: 12840646. Abstract: PURPOSE: To quantify the cardiorespiratory responses to indoor climbing during two increasingly difficult climbs and relate them to whole-body dynamic exercise. It was hypothesized that as climbing difficulty increased, oxygen consumption ([V02] and heart rate would increase, and that climbing would require utilization of a significant fraction of maximal cycling values. METHODS: Elite competitive sport rock climbers (6 male, 3 female) completed two data collection sessions. The first session was completed at an indoor climbing facility, and the second session was an incremental cycle test to exhaustion. During indoor climbing subjects were randomly assigned to climb two routes designated as "harder" or "easier" based on their previous best climb. Subjects wore a portable metabolic system, which allowed measurement of oxygen consumption [V02], minute ventilation ([V02]E), respiratory exchange ratio (RER), and heart rate. During the second session, maximal values for [V02], [V02]E, RER, and heart rate were determined during an incremental cycle test to exhaustion. RESULTS: Heart rate and [VO2], expressed as percent of cycling maximum, were significantly higher during harder climbing compared with easier climbing. During harder climbing, %HR(max) was significantly higher than %[V02] (2max) (89.6% vs 51.2%), and during easier climbing, %HR(max) was significantly higher than %[V02] (2max) (66.9% vs 45.3%). CONCLUSIONS: With increasing levels of climbing difficulty, there is a rise in both heart rate and [V02]. However, there is a disproportional rise in heart rate compared with [V02], which we attribute to the fact that climbing requires the use of intermittent isometric contractions of the arm musculature and the reliance of both anaerobic and aerobic metabolism.[Abstract] [Full Text] [Related] [New Search]