These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Functional identification of the alveolar edema reabsorption activity of murine tumor necrosis factor-alpha. Author: Elia N, Tapponnier M, Matthay MA, Hamacher J, Pache JC, Brundler MA, Totsch M, De Baetselier P, Fransen L, Fukuda N, Morel DR, Lucas R. Journal: Am J Respir Crit Care Med; 2003 Nov 01; 168(9):1043-50. PubMed ID: 12842853. Abstract: Tumor necrosis factor-alpha (TNF-alpha) activates sodium channels in Type II alveolar epithelial cells, an important mechanism for the reported fluid resorption capacity of the cytokine. Both TNF-alpha receptor-dependent and -independent effects were proposed for this activity in vitro, the latter mechanism mediated by the lectin-like domain of the molecule. In this study, the relative contribution of the receptor-dependent versus receptor-independent activities was investigated in an in situ mouse lung model and an ex vivo rat lung model. Fluid resorption due to murine TNF-alpha (mTNF-alpha) was functional in mice that were genetically deficient in both types of mTNF-alpha receptor, establishing the importance of mTNF-alpha receptor-independent effects in this species. In addition, we assessed the capacity of an mTNF-alpha-derived peptide (mLtip), which activates sodium transport by a receptor-independent mechanism, to reduce lung water content in an isolated, ventilated, autologous blood-perfused rat lung model. The results show that in this model, mLtip, in contrast to mTNF-alpha, produced a progressive recovery of dynamic lung compliance and airway resistance after alveolar flooding. There was also a significant reduction in lung water. These results indicate that the receptor-independent lectin-like domain of mTNF-alpha has a potential physiological role in the resolution of alveolar edema in rats and mice.[Abstract] [Full Text] [Related] [New Search]