These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: SHIP-2 and PTEN are expressed and active in vascular smooth muscle cell nuclei, but only SHIP-2 is associated with nuclear speckles.
    Author: Déléris P, Bacqueville D, Gayral S, Carrez L, Salles JP, Perret B, Breton-Douillon M.
    Journal: J Biol Chem; 2003 Oct 03; 278(40):38884-91. PubMed ID: 12847108.
    Abstract:
    Recently, the control of phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3)-dependant signaling by phosphatases has emerged, but there is a shortage of information on intranuclear PtdIns(3,4,5)P3 phosphatases. Therefore, we investigated the dephosphorylation of [32P]PtdIns(3,4,5)P3 specifically labeled on the D-3 position of the inositol ring in membrane-free nuclei isolated from pig aorta vascular smooth muscle cells (VSMCs). In vitro PtdIns(3,4,5)P3 phosphatase assays revealed the production of both [32P]PtdIns(3,4)P2 and inorganic phosphate, demonstrating the presence of PtdIns(3,4,5)P3 5- and 3-phosphatase activities inside the VSMC nucleus, respectively. Both activities presented the same potency in cellular lysates, whereas the nuclear PtdIns(3,4,5)P3 5-phosphatase activity appeared to be the most efficient. Immunoblot experiments showed for the first time the expression of the 5-phosphatase SHIP-2 (src homology 2 domain-containing inositol phosphatase) as well as the 3-phosphatase PTEN (phosphatase and tensin homolog deleted on chromosome 10) in VSMC nuclei. In addition, immunoprecipitations from nuclear fractions indicated a [32P]PtdIns(3,4,5)P3 dephosphorylation by both SHIP-2 and PTEN. Moreover, confocal microscopy analyses demonstrated that SHIP-2 but not PTEN colocalized with a speckle-specific component, the SC35 splicing factor. These results suggest that SHIP-2 may be the primary enzyme for metabolizing PtdIns(3,4,5)P3 into PtdIns(3,4)P2 within the nucleus, thus producing another second messenger, whereas PTEN could down-regulate nuclear phosphoinositide 3-kinase signaling. Finally, intranuclear PtdIns(3,4,5)P3 phosphatases might be involved in the control of VSMC proliferation and the pathogenesis of vascular proliferative disorders.
    [Abstract] [Full Text] [Related] [New Search]