These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Three-dimensional echocardiographic determination of cardiac output at rest and under dobutamine stress: comparison with thermodilution measurements in the ischemic pig model. Author: Handke M, Heinrichs G, Magosaki E, Lutter G, Bode C, Geibel A. Journal: Echocardiography; 2003 Jan; 20(1):47-55. PubMed ID: 12848697. Abstract: Determination of cardiac output is a potentially important clinical application of three-dimensional (3-D) echocardiography since it could replace invasive measurements with the Swan-Ganz-catheter. To date, there are no studies available to determine whether cardiac output measured by thermodilution can be predicted reliably under changing hemodynamic conditions. Fifteen pigs with ischemic myocardium were examined under four hemodynamic conditions at rest and under pharmacological stress with 5, 10, and 20 microg/kg/min dobutamine. The 3-D datasets were recorded by means of transesophageal echocardiography. The endocardial definition was enhanced by administering the contrast agent FS069 (Optison). Cardiac output was calculated as the product of stroke volume (end-diastolic - end-systolic volume) and heart rate. The invasive measurements were performed with a continuous thermodilution system. In general, there was moderate correlation between 3-D echocardiography and thermodilution(r = 0.72, P < 0.001). At rest, the 3-D echocardiographic measurements were slightly but significantly lower than the invasive measurements (mean difference 0.6 +/- 0.5L/min,P < 0.001). Under stress with 5, 10, and 20 microg/kg/min dobutamine, there was a marked increase in the deviation (1.3 +/- 0.5L/min,P < 0.001; 1.6 +/- 0.7 L/min,P < 0.001; and 2.1 +/- 1.1L/min,P < 0.001, respectively). The deviation was based on two factors: (1). Under stress, the decreasing number of frames per cardiac cycle acquired with 3-D echocardiography led to imprecise recording of end-diastolic and end-systolic volumes, and thus to an underestimation of cardiac output. At least 30 frames per cardiac cycle are needed to eliminate this effect. (2). There is a systematic difference between 3-D echocardiographic and invasive measurements, which is independent of the imaging rate. This is based on an overestimation of the true values by thermodilution. In conclusion, cardiac output can be determined correctly by 3-D echocardiography for normal heart rates at rest. At elevated heart rates, the temporal resolution of 3-D systems currently available is not adequate for reliable determination. In performing and evaluating future clinical comparative studies, the systematic difference between 3-D echocardiography and thermodilution, based on overestimation by thermodilution, must be taken into account.[Abstract] [Full Text] [Related] [New Search]