These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Production process monitoring by serial mapping of microbial carbon flux distributions using a novel Sensor Reactor approach: II--(13)C-labeling-based metabolic flux analysis and L-lysine production.
    Author: Drysch A, El Massaoudi M, Mack C, Takors R, de Graaf AA, Sahm H.
    Journal: Metab Eng; 2003 Apr; 5(2):96-107. PubMed ID: 12850132.
    Abstract:
    Corynebacterium glutamicum is intensively used for the industrial large-scale (fed-) batch production of amino acids, especially glutamate and lysine. However, metabolic flux analyses based on 13C-labeling experiments of this organism have hitherto been restricted to small-scale batch conditions and carbon-limited chemostat cultures, and are therefore of questionable relevance for industrial fermentations. To lever flux analysis to the industrial level, a novel Sensor Reactor approach was developed (El Massaoudi et al., Metab. Eng., submitted), in which a 300-L production reactor and a 1-L Sensor Reactor are run in parallel master/slave modus, thus enabling 13C-based metabolic flux analysis to generate a series of flux maps that document large-scale fermentation courses in detail. We describe the successful combination of this technology with nuclear magnetic resonance (NMR) analysis, metabolite balancing methods and a mathematical description of 13C-isotope labelings resulting in a powerful tool for quantitative pathway analysis during a batch fermentation. As a first application, 13C-based metabolic flux analysis was performed on exponentially growing, lysine-producing C. glutamicum MH20-22B during three phases of a pilot-scale batch fermentation. By studying the growth, (co-) substrate consumption and (by-) product formation, the similarity of the fermentations in production and Sensor Reactor was verified. Applying a generally applicable mathematical model, which included metabolite and carbon labeling balances for the analysis of proteinogenic amino acid 13C-isotopomer labeling data, the in vivo metabolic flux distribution was investigated during subsequent phases of exponential growth. It was shown for the first time that the in vivo reverse C(4)-decarboxylation flux at the anaplerotic node in C. glutamicum significantly decreased (70%) in parallel with threefold increased lysine formation during the investigated subsequent phases of exponential growth.
    [Abstract] [Full Text] [Related] [New Search]