These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of 13-alkyl-substituted berberine alkaloids on the expression of COX-II, TNF-alpha, iNOS, and IL-12 production in LPS-stimulated macrophages.
    Author: Lee DU, Kang YJ, Park MK, Lee YS, Seo HG, Kim TS, Kim CH, Chang KC.
    Journal: Life Sci; 2003 Aug 01; 73(11):1401-12. PubMed ID: 12850501.
    Abstract:
    Berberine, a major alkaloidal component of Coptidis Rhizoma, has antibacterial activity, anti-inflammatory effect, antitumor and antimotility actions. We suggested that one of possible mechanisms of anti-bacterial activity of berberine may be based on the production of interleukin (IL)-12. Recently 13-alkyl-substituted berberines were shown to be better activity than berberine against certain bacteria species and human cancer cell lines. In the present study, therefore, the effects of 13-methylberberine (13-MB) and 13-ethylberberine (13-EB) on the production of IL-12 and expression of iNOS, TNF-alpha and COX-II were investigated using macrophages in culture. In LPS-stimulated RAW 264.7 cells, these alkaloids decreased the nitrites, concentration-dependently. The concentration of 50% inhibition of NO production (IC50) by 13-MB and 13-EB was 11.64 and 9.32 microM, respectively. The suppressed expression of iNOS protein was responsible for the reduction of NO production. Neither the expression of mRNA of iNOS, COX-II and TNF- alpha nor protein of COX-II and TNF-alpha was affected by both 13-MB and 13-EB, but production of PGE2 in LPS-stimulated RAW 264.7 cells was significantly reduced. Another striking finding of the present study is that 13-MB and 13-EB increased production of IL-12 in LPS-treated splenic macrophages. These results indicate that posttranscriptional regulatory mechanism of iNOS gene expression by 13-MB and 13-EB is involved, and COX-II activity is inhibited by 13-MB and 13-EB, respectively. In conclusion, the present study demonstrates that 13-methyl- and 13-ethylberberine alkaloids can be useful as an immunotherapeutic compound for induction of IL-12, which is potentially applicable for tumors, infectious disease, and airway inflammation.
    [Abstract] [Full Text] [Related] [New Search]