These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Transforming growth factor-beta1 activates interleukin-6 expression in prostate cancer cells through the synergistic collaboration of the Smad2, p38-NF-kappaB, JNK, and Ras signaling pathways. Author: Park JI, Lee MG, Cho K, Park BJ, Chae KS, Byun DS, Ryu BK, Park YK, Chi SG. Journal: Oncogene; 2003 Jul 10; 22(28):4314-32. PubMed ID: 12853969. Abstract: Transforming growth factor (TGF)-beta1 acts as a potent growth inhibitor of prostate epithelial cells, and aberrant function of its receptor type I and II correlates with tumor aggressiveness. However, intracellular and serum TGF-beta1 levels are elevated in prostate cancer patients and further increased in patients with metastatic carcinoma, suggesting the oncogenic switch of TGF-beta1 role in prostate tumorigenesis. Recently, we reported the mitogenic conversion of TGF-beta1 effect by oncogenic Ha-Ras in prostate cancer cells. Here, we show that TGF-beta1 activates interleukin (IL)-6, which has been implicated in the malignant progression of prostate cancers, via multiple signaling pathways including Smad2, nuclear factor-kappaB (NF-kappaB), JNK, and Ras. TGF-beta1-induced IL-6 gene expression was strongly inhibited by DN-Smad2 but not by DN-Smad3 while it was further activated by wild-type Smad2 transfection. IL-6 activation by TGF-beta1 was accompanied by nuclear translocation of NF-kappaB, which was blocked by the p38 inhibitors SB202190 and SB203580 or by IkappaBalphaDeltaN transfection, indicating the crucial role for the p38-NF-kappaB signaling in TGF-beta1 induction of IL-6. TGF-beta1 activated c-Jun phosphorylation, and IL-6 induction by TGF-beta1 was severely impeded by DN-c-Jun and DN-JNK or AP-1 inhibitor curcumin, showing that the JNK-c-Jun-AP-1 signaling plays a pivotal role in TGF-beta1 stimulation of IL-6. It was also found that the Ras-Raf-MEK1 cascade is activated by TGF-beta1 and participates in the TGF-beta1 induction of IL-6 in an AP-1-dependent manner. Cotransfection assays demonstrated that TGF-beta1 stimulation of IL-6 results from the synergistic collaboration of the Smad2, p38-NF-kappaB, JNK-c-Jun-AP-1, or Ras-Raf-MEK1 cascades. In addition, a time course IL-6 decay revealed that mRNA stability of IL-6 is modestly increased by TGF-beta1, indicating that TGF-beta1 also regulates IL-6 at the post-transcriptional level. Intriguingly, IL-6 inactivation restored the sensitivity to TGF-beta1-mediated growth arrest and apoptosis, suggesting that elevated IL-6 in advanced prostate tumors might act as a resistance factor against TGF-beta1. Collectively, our data demonstrate that IL-6 expression is stimulated by tumor-producing TGF-beta1 in human prostate cancer cells through multiple signaling pathways including Smad2, p38, JNK, and Ras, and enhanced expression of IL-6 could contribute to the oncogenic switch of TGF-beta1 role for prostate tumorigenesis, in part by counteracting its growth suppression function.[Abstract] [Full Text] [Related] [New Search]