These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Influence of surface conditions and silane agent on the bond of resin to IPS Empress 2 ceramic. Author: Spohr AM, Sobrinho LC, Consani S, Sinhoreti MA, Knowles JC. Journal: Int J Prosthodont; 2003; 16(3):277-82. PubMed ID: 12854792. Abstract: PURPOSE: The aim of this study was to evaluate the effect of different ceramic surface treatments on the tensile bond strength between IPS Empress 2 ceramic framework and Rely X adhesive resin cement, with or without the application of a silane coupling agent. MATERIALS AND METHODS: One hundred twenty disks were made, embedded in resin, and randomly divided into six groups: group 1 = sandblasting (100 microm), no silanation; group 2 = sandblasting (100 microm), silane treatment; group 3 = sandblasting (50 microm), no silanation; group 4 = sandblasting (50 microm), silane treatment; group 5 = hydrofluoric acid etching, no silanation; and group 6 = hydrofluoric acid etching, silane treatment. The disks were bonded into pairs with adhesive resin cement. All samples were stored in distilled water at 37 degrees C for 24 hours and then thermocycled. The samples were submitted to tensile testing. RESULTS: The use of silane improved the bond strength in relation to the groups in which silane was not applied (P < .05). The most effective surface treatment was etching with 10% hydrofluoric acid, both with (25.6 MPa) and without silane application (16.4 MPa); these values showed a statistically significant difference compared to sandblasting with 50- and 100-microm Al2O3. Sandblasting with 50-microm Al2O3, with (11.8 MPa) and without silane (5.4 MPa), demonstrated significantly higher tensile bond strength than sandblasting with 100-microm Al2O3, with (8.3 MPa) and without silane (3.8 MPa). CONCLUSION: Combined application of 10% hydrofluoric acid and silane enhanced the bond strength between the IPS Empress 2 ceramic framework and resin agent.[Abstract] [Full Text] [Related] [New Search]