These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Phosphine-containing HYNIC derivatives as potential bifunctional chelators for (99m)Tc-labeling of small biomolecules.
    Author: Purohit A, Liu S, Casebier D, Edwards DS.
    Journal: Bioconjug Chem; 2003; 14(4):720-7. PubMed ID: 12862424.
    Abstract:
    Two prototype phosphine-containing HYNIC chelators, HYNIC-Kp-DPPB and HYNIC-Ko-DPPB (HYNIC = 6-hydrazinonicotinamide; K = lysine; and DPPB = diphenylphosphine-benzoic acid), have been synthesized and characterized by NMR ((1)H, (13)C, and (31)P) and LC-MS. Macrocyclic (99m)Tc complexes, [(99m)Tc(HYNIC-Ko-TPPB)(tricine)] and [(99m)Tc(HYNIC-Kp-DPPB)(tricine)], were prepared by reacting the phosphine-containing HYNIC chelator with (99m)TcO(4)(-) in the presence of excess tricine and stannous chloride. Results from this study clearly demonstrated that both HYNIC-Kp-DPPB and HYNIC-Ko-DPPB are able to form highly stable macrocyclic (99m)Tc complexes, [(99m)Tc(HYNIC-Ko-TPPB)(tricine)] and [(99m)Tc(HYNIC-Kp-DPPB)(tricine)], when tricine is used as the coligand. Radio-HPLC data suggest that the complex [(99m)Tc(HYNIC-Kp-DPPB)(tricine)] exists as only one detectable isomer in solution while the complex [(99m)Tc(HYNIC-Ko-DPPB)(tricine)] has three isomers. It was also found that three isomers of [(99m)Tc(HYNIC-Ko-DPPB)(tricine)] interconvert at elevated temperatures, suggesting that the presence of these isomers might be due conformational changes in the macrocyclic Tc chelate. The LC-MS data for both macrocyclic (99m)Tc complexes are completely consistent with the proposed composition. The phosphine-containing HYNIC chelators described in this study may have the potential as bifunctional chelators for (99m)Tc labeling of small biomolecules.
    [Abstract] [Full Text] [Related] [New Search]