These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Sodium nitroprusside-induced rat fundus relaxation is ryanodine-sensitive and involves L-type Ca2+ channel and small conductance Ca(2+)-sensitive K+ channel components.
    Author: Geeson J, Larsson K, Hourani SM, Toms NJ.
    Journal: Auton Autacoid Pharmacol; 2002; 22(5-6):297-301. PubMed ID: 12866810.
    Abstract:
    1 The aim of this study was to examine whether sodium nitroprusside (SNP)-induced relaxation of rat fundus longitudinal smooth muscle involves ryanodine-sensitive Ca2+ release. 2 SNP (300 nM-30 microM) elicited concentration-dependent relaxation of precontracted (1 microM carbachol) rat fundus, an effect almost abolished by the selective guanylyl cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one (ODQ, 10 microM). 3 SNP-mediated relaxations were almost abolished by 10 microM ryanodine. 4 SNP-mediated relaxations were also reduced by either 1 microM apamin (a selective small conductance Ca(2+)-sensitive K+ channel, SKCa, inhibitor) or the selective L-type Ca2+ channel inhibitor, nicardipine (3 microM). 5 SNP-induced relaxations were insensitive to 1 mM tetraethylammonium chloride (an inhibitor of large-conductance Ca(2+)-sensitive K+ channels) and 1 microM glibenclamide (an ATP-sensitive K+ channel inhibitor). 6 These data suggest that SNP-mediated fundus relaxation occurs via a cGMP-mediated and ryanodine-sensitive mechanism which requires, at least in part, SKCa and L-type Ca2+ channel activity.
    [Abstract] [Full Text] [Related] [New Search]