These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cerebral blood flow sensitivity to CO2 measured with steady-state and Read's rebreathing methods. Author: Pandit JJ, Mohan RM, Paterson ND, Poulin MJ. Journal: Respir Physiol Neurobiol; 2003 Aug 14; 137(1):1-10. PubMed ID: 12871672. Abstract: The ventilatory response to carbon dioxide (CO2) measured by the steady-state method is lower than that measured by Read's rebreathing method. A change in end-tidal P CO2 (PET CO2) results in a lower increment change in brain tissue P CO2 (Pt CO2) in the steady-state than with rebreathing: since Pt(CO2) determines the ventilatory response to CO2, the response is lower in the steady-state. If cerebral blood flow (CBF) responds to Pt CO2, the CBF-CO2 response should be lower in the steady-state than with rebreathing. Six subjects undertook two protocols, (a) steady-state: PET CO2 was held at 1.5 mmHg above normal (isocapnia) for 10 min, then raised to three levels of hypercapnia, (8 min each; 6.5, 11.5 and 16.5 mmHg above normal, separated by 4 min isocapnia). End-tidal P O2 was held at 300 mmHg; (b) rebreathing: subjects rebreathed via a 6 L bag filled with 6.5% CO2 in O2. Transcranial Doppler-derived CBF yielded a higher CBF-CO2 sensitivity in the steady-state than with rebreathing, suggesting that CBF does not respond to Pt CO2.[Abstract] [Full Text] [Related] [New Search]