These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Noninactivating, tetrodotoxin-sensitive Na+ conductance in peripheral axons. Author: Tokuno HA, Kocsis JD, Waxman SG. Journal: Muscle Nerve; 2003 Aug; 28(2):212-7. PubMed ID: 12872326. Abstract: A noninactivating, persistent sodium current has been demonstrated previously in dorsal root ganglia neurons and in rat optic nerve. We report here that Na(+) channel blockade with tetrodotoxin (TTX) in isolated dorsal and ventral roots elicits membrane hyperpolarization, suggesting the presence of a persistent Na(+) current in peripheral axons. We used a modified sucrose-gap chamber to monitor resting and action potentials and observed a hyperpolarizing shift in the nerve potential of rat dorsal and ventral roots by TTX. The block of transient inward Na(+) currents was confirmed by the abolition of compound action potentials (CAPs). Moreover, depolarization of nerve roots by elevating extracellular K(+) concentrations to 40 mM eliminated CAPs but did not significantly alter TTX-induced hyperpolarizations, indicating that the persistent Na(+) currents in nerve roots are not voltage-dependent. Tetrodotoxin-sensitive persistent inward Na(+) currents are present in both dorsal and ventral root axons at rest and may contribute to axonal excitability.[Abstract] [Full Text] [Related] [New Search]