These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Probing the channel-bound shaker B inactivating peptide by stereoisomeric substitution at a strategic tyrosine residue.
    Author: Encinar JA, Fernández AM, Poveda JA, Molina ML, Albar JP, Gavilanes F, Gonzalez-Ros JM.
    Journal: Biochemistry; 2003 Jul 29; 42(29):8879-84. PubMed ID: 12873149.
    Abstract:
    A synthetic peptide patterned after the sequence of the inactivating ball domain of the Shaker B K(+) channel, the ShB peptide, fully restores fast inactivation in the deletion Shaker BDelta6-46 K(+) channel, which lacks the constitutive ball domains. On the contrary, a similar peptide in which tyrosine 8 is substituted by the secondary structure-disrupting d-tyrosine stereoisomer does not. This suggests that the stereoisomeric substitution prevents the peptide from adopting a structured conformation when bound to the channel during inactivation. Moreover, characteristic in vitro features of the wild-type ShB peptide such as the marked propensity to adopt an intramolecular beta-hairpin structure when challenged by anionic phospholipid vesicles, a model target mimicking features of the inactivation site in the channel protein, or to insert into their hydrophobic bilayers, are lost in the d-tyrosine-containing peptide, whose behavior is practically identical to that of noninactivating peptide mutants. In the absence of high resolution crystallographic data on the inactivated channel/peptide complex, these latter findings suggest that the structured conformation required for the peptide to promote channel inactivation, as referred to above, is likely to be beta-hairpin.
    [Abstract] [Full Text] [Related] [New Search]