These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A unique nonreducing terminal modification of chondroitin sulfate by N-acetylgalactosamine 4-sulfate 6-o-sulfotransferase. Author: Ohtake S, Kimata K, Habuchi O. Journal: J Biol Chem; 2003 Oct 03; 278(40):38443-52. PubMed ID: 12874280. Abstract: N-Acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST) transfers sulfate from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to position 6 of N-acetylgalactosamine 4-sulfate (GalNAc(4SO4)). We previously identified human GalNAc4S-6ST cDNA and showed that the recombinant GalNAc4S-6ST could transfer sulfate efficiently to the nonreducing terminal GalNAc(4SO4) residues. We here present evidence that GalNAc4S-6ST should be involved in a unique nonreducing terminal modification of chondroitin sulfate A (CSA). From the nonreducing terminal of CS-A, a GlcA-containing oligosaccharide (Oligo I) that could serve as an acceptor for GalNAc4S-6ST was obtained after chondroitinase ACII digestion. Oligo I was found to be GalNAc(4SO4)-GlcA(2SO4)-GalNAc(6SO4) because GalNAc(4SO4) and deltaHexA(2SO4)-GalNAc(6SO4) were formed after chondroitinase ABC digestion. When Oligo I was used as the acceptor for GalNAc4S-6ST, sulfate was transferred to position 6 of GalNAc(4SO4) located at the nonreducing end of Oligo I. Oligo I was much better acceptor for GalNAc4S-6ST than GalNAc(4SO4)-GlcAGalNAc(6SO4). An oligosaccharide (Oligo II) whose structure is identical to that of the sulfated Oligo I was obtained from CS-A after chondroitinase ACII digestion, indicating that the terminal modification occurs under the physiological conditions. When CS-A was incubated with [35S]PAPS and GalNAc4S-6ST and the 35S-labeled product was digested with chondroitinase ACII, a 35S-labeled trisaccharide (Oligo III) containing [35S]GalNAc(4,6-SO4) residue at the nonreducing end was obtained. Oligo III behaved identically with the sulfated Oligos I and II. These results suggest that GalNAc4S-6ST may be involved in the terminal modification of CS-A, through which a highly sulfated nonreducing terminal sequence is generated.[Abstract] [Full Text] [Related] [New Search]