These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Factors influencing the formation and relative distribution of haloacetic acids and trihalomethanes in drinking water. Author: Liang L, Singer PC. Journal: Environ Sci Technol; 2003 Jul 01; 37(13):2920-8. PubMed ID: 12875395. Abstract: Various water quality and treatment characteristics were evaluated under controlled chlorination conditions to determine their influences on the formation and distribution of nine haloacetic acids and four trihalomethanes in drinking water. Raw waters were sampled from five water utilities and were coagulated with alum and fractionated with XAD-8 resin. The resulting four fractions--raw and coagulated water and the hydrophobic and hydrophilic extracts--were then chlorinated at pH 6 and 8 and held at 20 degrees C for various contact times. The results show that increasing pH from 6 to 8 increased trihalomethane formation but decreased trihaloacetic acid formation, with little effect on dihaloacetic acid formation. More trihalomethanes were formed than haloacetic acids at pH 8, while the reverse was true at pH 6. Hydrophobic fractions always gave higher haloacetic acid and trihalomethane formation potentials than their corresponding hydrophilic fractions, but hydrophilic carbon also played an important role in disinfection byproduct formation for waters with low humic content. The bromine-containing species comprised a higher molar proportion of the trihalomethanes than of the haloacetic acids. The hydrophilic fractions were more reactive with bromine than their corresponding hydrophobic fractions. Coagulation generally removed more haloacetic acid precursors than trihalomethane precursors. Waters with higher specific ultraviolet absorbance values were more amenable to removal of organic material by coagulation than waters with low specific ultraviolet absorbance values. Experimental evidence suggests that haloacetic acid precursors have a higher aromatic content than trihalomethane precursors.[Abstract] [Full Text] [Related] [New Search]