These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Block of HERG-carried K+ currents by the new repolarization delaying agent H 345/52.
    Author: Amos GJ, Jacobson I, Duker G, Carlsson L.
    Journal: J Cardiovasc Electrophysiol; 2003 Jun; 14(6):651-8. PubMed ID: 12875428.
    Abstract:
    INTRODUCTION: The aim of this study was to analyze the block of HERG-carried membrane currents caused by H 345/52, a new antiarrhythmic compound with low proarrhythmic activity, in transfected mouse fibroblasts. METHODS AND RESULTS: Using the whole-cell configuration of the voltage patch clamp technique, it was demonstrated that H 345/52 concentration-dependently blocked HERG-carried currents with an IC50 of 230 nM. H 345/52 preferentially bound to the open channel with unusually rapid kinetics and was trapped by channel closure. Voltage-independent behavior of H 345/52 was observed during both square-pulse and action potential clamp protocols. In contrast, the Class III agents dofetilide (10 nM) and almokalant (250 nM) demonstrated significant membrane potential-dependent effects during square-pulse clamp protocols. When using action potential clamp protocols, voltage dependence was seen with dofetilide but not with almokalant. Mathematical simulations of human ventricular action potentials predicted that the different voltage-dependent behaviors would not produce marked variations in action potential duration prolongation patterns. CONCLUSION: We propose that block of IKr is the principal mechanism by which H 345/52 delays repolarization in human myocardium. The voltage independence of HERG/IKr block is unlikely to underlie the low proarrhythmic potential, and ancillary effects on other membrane currents must be considered.
    [Abstract] [Full Text] [Related] [New Search]