These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Polymorphisms of drug-metabolizing enzymes CYP2C9, CYP2C19, CYP2D6, CYP1A1, NAT2 and of P-glycoprotein in a Russian population. Author: Gaikovitch EA, Cascorbi I, Mrozikiewicz PM, Brockmöller J, Frötschl R, Köpke K, Gerloff T, Chernov JN, Roots I. Journal: Eur J Clin Pharmacol; 2003 Aug; 59(4):303-12. PubMed ID: 12879168. Abstract: OBJECTIVE: The frequency of functionally important mutations and alleles of genes coding for xenobiotic metabolizing enzymes shows a wide ethnic variation. However, little is known of the frequency distribution of the major allelic variants in the Russian population. METHODS: Using polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP) genotyping assays and the real-time PCR with fluorescent probes, the frequencies of functionally important variants of the cytochromes P450 (CYP) 2C9, 2C19, 2D6, 1A1 as well as arylamine N-acetyltransferase 2 (NAT2) and P-glycoprotein (MDR1) were determined in a sample of 290 Russian volunteers derived from Voronezh area. RESULTS: CYP2C9*2 and * 3 alleles were found with allelic frequencies of 10.5% and 6.7%, respectively. The novel intron-2 T>C mutation at exon 2 +73 bp occurred in 24.8% of alleles. CYP2C19*2 and *3 alleles occurred in 11.4% and 0.3%, respectively. Six persons (2.1%) carried two of these CYP2C19 alleles responsible for poor metabolizing activity. Of all subjects, 5.9% were CYP2D6 poor metabolizers, whereas 3.4% were addressed to ultra-rapid metabolizers (CYP2D6*1x2/*1). The CYP1A1*2A allele was found in 4.7%, *2B in 5.0%, *4 in 2.6%, and the 5'-mutations -3219C>T, -3229G>A, and the novel -4335G>A in 6.0%, 2.9% and 26.0% of alleles, respectively. Genotyping of eight different single nucleotide polymorphisms in the NAT2 gene provided in 58.0% a genotype associated with slow acetylation. The MDR1 triple variants G2677T and G2677A in exon 21 had an allelic frequency of 41.9% and 3.3%, respectively, and the variant C3435T in exon 26 one of 54.3%. Frequencies of functionally important haplotypes were calculated. CONCLUSION: The overview of allele distribution of important xenobiotic-metabolizing enzymes among a Russian population shows similarity to other Caucasians. The data will be useful for clinical pharmacokinetic investigations and for drug dosage recommendations in the Russian population.[Abstract] [Full Text] [Related] [New Search]