These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: P-glycoprotein-like protein contributes to cadmium resistance in Euglena gracilis. Author: Einicker-Lamas M, Morales MM, Miranda K, Garcia-Abreu J, Oliveira AJ, Silva FL, Oliveira MM. Journal: J Comp Physiol B; 2003 Sep; 173(7):559-64. PubMed ID: 12879347. Abstract: Selective pressures from polluted environments have led to the development of resistance systems in aquatic organisms. Using different techniques, this study examined a cadmium defense mechanism of the freshwater unicellular protozoa Euglena gracilis, and found it to be an efflux pump similar to the multidrug resistance P-glycoprotein. Cd(2+)-treated E. gracilis were able to extrude Rhodamine 123 at 21 degrees C, but not at 4 degrees C. Furthermore, verapamil, a P-glycoprotein modulator, partially blocked the efflux process (at 21 degrees C), and enhanced the Cd(2+) toxic effects on these cells. Western immunoblots of cell lysates, using the anti-P-glycoprotein antibody JSB-1, revealed a 120-KDa protein, which was expressed, in high amounts on Cd(2+)-exposed cells (74% above the control values). Moreover, cells treated with JSB-1 became more sensitive to the harmful effects of cadmium, showing a decreased survival rate. Taken together, these results suggest that a MDR phenotype has evolved in Euglena as one of the mechanisms for cadmium detoxification.[Abstract] [Full Text] [Related] [New Search]