These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Suppression tuning in noise-exposed rabbits.
    Author: Howard MA, Stagner BB, Foster PK, Lonsbury-Martin BL, Martin GK.
    Journal: J Acoust Soc Am; 2003 Jul; 114(1):279-93. PubMed ID: 12880041.
    Abstract:
    Psychophysical, basilar-membrane (BM), and single nerve-fiber tuning curves, as well as suppression of distortion-product otoacoustic emissions (DPOAEs), all give rise to frequency tuning patterns with stereotypical features. Similarities and differences between the behaviors of these tuning functions, both in normal conditions and following various cochlear insults, have been documented. While neural tuning curves (NTCs) and BM tuning curves behave similarly both before and after cochlear insults known to disrupt frequency selectivity, DPOAE suppression tuning curves (STCs) do not necessarily mirror these responses following either administration of ototoxins [Martin et al., J. Acoust. Soc. Am. 104, 972-983 (1998)] or exposure to temporarily damaging noise [Howard et al., J. Acoust. Soc. Am. 111, 285-296 (2002)]. However, changes in STC parameters may be predictive of other changes in cochlear function such as cochlear immaturity in neonatal humans [Abdala, Hear. Res. 121, 125-138 (1998)]. To determine the effects of noise-induced permanent auditory dysfunction on STC parameters, rabbits were exposed to high-level noise that led to permanent reductions in DPOAE level, and comparisons between pre- and postexposure DPOAE levels and STCs were made. Statistical comparisons of pre- and postexposure STC values at CF revealed consistent basal shifts in the frequency region of greatest cochlear damage, whereas thresholds, Q10dB, and tip-to-tail gain values were not reliably altered. Additionally, a large percentage of high-frequency lobes associated with third tone interference phenomena, that were exhibited in some data sets, were dramatically reduced following noise exposure. Thus, previously described areas of DPOAE interference above f2 may also be studied using this type of experimental manipulation [Martin et al., Hear. Res. 136, 105-123 (1999); Mills, J. Acoust. Soc. Am. 107, 2586-2602 (2002)].
    [Abstract] [Full Text] [Related] [New Search]