These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: N-acetylcysteine reduces chemokine release via inhibition of p38 MAPK in human airway smooth muscle cells.
    Author: Wuyts WA, Vanaudenaerde BM, Dupont LJ, Demedts MG, Verleden GM.
    Journal: Eur Respir J; 2003 Jul; 22(1):43-9. PubMed ID: 12882449.
    Abstract:
    Reactive oxygen species are involved in the activation of several mitogen-activated protein kinases (MAPKs), key-players in the production of several cytokines. Therefore the current study investigated whether N-acetylcysteine (NAC), an antioxidative agent, inhibits the interleukin (IL)-1beta-induced expression and production of eotaxin and monocyte chemotactic protein (MCP)-1 in human airway smooth muscle cells (HASMC). NAC (10 mM) decreased the expression of eotaxin and MCP-1, by 46 +/- 11% (n=7) and 87 +/- 4% (n=6), respectively; the eotaxin release was inhibited by 75 +/- 5% (n=7), whereas the MCP-1 release was decreased by 69 +/- 41% (n=10). NAC (1 mM) also decreased the IL-1beta-induced activation of p38 MAPK. Compared with unstimulated cells, a four-fold increase in 8-isoprostane production in IL-1beta-stimulated HASMC was observed, which could be inhibited by NAC in a concentration-dependent way, with a maximum inhibition of 39 +/- 12%, with 1 mM NAC. The present study demonstrated that N-acetylcysteine inhibits the interleukin-1beta-induced eotaxin and monocyte chemotactic protein 1 expression and production due to a decreased activation of p38 mitogen-activated protein kinase. This study has also shown that N-acetylcysteine decreases the interleukin-1beta-induced production of reactive oxygen species, as suggested by a reduction in the 8-isoprostane production.
    [Abstract] [Full Text] [Related] [New Search]