These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: CD8+ T cells, NK cells and IFN-gamma are important for control of tumor with downregulated MHC class I expression by DNA vaccination.
    Author: Cheng WF, Hung CF, Lin KY, Ling M, Juang J, He L, Lin CT, Wu TC.
    Journal: Gene Ther; 2003 Aug; 10(16):1311-20. PubMed ID: 12883527.
    Abstract:
    One of the major hurdles facing cancer immunotherapy is that cancers may downregulate expression of MHC class I molecules. The development of a suitable tumor model with downregulated MHC class I expression is critical for designing vaccines and immunotherapeutic strategies to control such tumors. We developed an E7-expressing murine tumor model with downregulated MHC class I expression, TC-1 P3 (A15). Using this model, we tested DNA and vaccinia vaccines for their ability to control tumors with downregulated MHC class I expression. We found that vaccination with DNA encoding E7 linked to Mycobacterial heat shock protein 70 (HSP70) generated a significant antitumor effect against TC-1 P3 (A15), while vaccination with E7/HSP70 vaccinia did not generate an appreciable antitumor effect. Lymphocyte depletion experiments revealed that both CD8+ T cells and NK cells were essential for the antitumor effect generated by E7/HSP70 DNA against TC-1 P3 (A15). Furthermore, tumor protection experiments using IFN-gamma knockout mice revealed that IFN-gamma was essential for the antitumor effect generated by E7/HSP70 DNA against TC-1 P3 (A15). Our results demonstrate that vaccination with E7/HSP70 DNA results in a significant antitumor effect against a neoplasm with downregulated MHC class I expression and the importance of CD8+ T cells, NK cells, and IFN-gamma in generating this antitumor effect.
    [Abstract] [Full Text] [Related] [New Search]