These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Modeling domino effects in enzymes: molecular basis of the substrate specificity of the bacterial metallo-beta-lactamases IMP-1 and IMP-6. Author: Oelschlaeger P, Schmid RD, Pleiss J. Journal: Biochemistry; 2003 Aug 05; 42(30):8945-56. PubMed ID: 12885227. Abstract: Metallo-beta-lactamases can hydrolyze a broad spectrum of beta-lactam antibiotics and thus confer resistance to bacteria. For the Pseudomonas aeruginosa enzyme IMP-1, several variants have been reported. IMP-6 and IMP-1 differ by a single residue (glycine and serine at position 196, respectively), but have significantly different substrate spectra; while the catalytic efficiency toward the two cephalosporins cephalothin and cefotaxime is similar for both variants, IMP-1 is up to 10-fold more efficient than IMP-6 toward cephaloridine and ceftazidime. Interestingly, this biochemical effect is caused by a residue remote from the active site. The substrate-specific impact of residue 196 was studied by molecular dynamics simulations using a cationic dummy atom approach for the zinc ions. Substrates were docked in an intermediate structure near the transition state to the binding site of IMP-1 and IMP-6. At a simulation temperature of 100 K, most complexes were stable during 1 ns of simulation time. However, at higher temperatures, some complexes became unstable and the substrate changed to a nonactive conformation. To model stability, six molecular dynamics simulations at 100 K were carried out for all enzyme-substrate complexes. Stable structures were further heated to 200 and 300 K. By counting stable structures, we derived a stability ranking score which correlated with experimentally determined catalytic efficiency. The use of a stability score as an indicator of catalytic efficiency of metalloenzymes is novel, and the study of substrates in a near-transition state intermediate structure is superior to the modeling of Michaelis complexes. The remote effect of residue 196 can be described by a domino effect: upon replacement of serine with glycine, a hole is created and a stabilizing interaction between Ser196 and Lys33 disappears, rendering the neighboring residues more flexible; this increased flexibility is then transferred to the active site.[Abstract] [Full Text] [Related] [New Search]