These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Subtype-selective antagonists of lysophosphatidic Acid receptors inhibit platelet activation triggered by the lipid core of atherosclerotic plaques.
    Author: Rother E, Brandl R, Baker DL, Goyal P, Gebhard H, Tigyi G, Siess W.
    Journal: Circulation; 2003 Aug 12; 108(6):741-7. PubMed ID: 12885756.
    Abstract:
    BACKGROUND: Lysophosphatidic acid (LPA) is a platelet-activating component of mildly oxidized LDL (mox-LDL) and lipids isolated from human atherosclerotic plaques. Specific antagonists of platelet LPA receptors could be useful inhibitors of thrombus formation in patients with cardiovascular disease. METHODS AND RESULTS: Short-chain analogs of phosphatidic acid (PA) were examined for their effect on two initial platelet responses, platelet shape change and Ca2+ mobilization. Dioctylglycerol pyrophosphate [DGPP(8:0)] and dioctylphosphatidic acid [PA(8:0)], recently described selective antagonists of the LPA1 and LPA3 receptors, inhibited platelet activation evoked by LPA but not by other platelet stimuli. DGPP(8:0) was more potent than PA(8:0). DGPP(8:0) also inhibited platelet shape change induced by mox-LDL and lipid extracts from human atherosclerotic plaques. Notably, we demonstrate for the first time that the lipid-rich core isolated from soft plaques was able to directly induce shape change. This effect was completely abrogated by prior incubation of platelets with DGPP(8:0). Moreover, coapplication of the lipid-rich core or LPA together with subthreshold concentrations of ADP or epinephrine synergistically induced platelet aggregation; this effect was inhibited by DGPP(8:0). Analysis by liquid chromatography-mass spectrometry revealed the presence of LPA alkyl- and acyl-molecular species with high platelet-activating potency (16:0-alkyl-LPA, 20:4-acyl-LPA). CONCLUSIONS: LPA molecules present in the core region of atherosclerotic plaques trigger rapid platelet activation through the stimulation of LPA1 and LPA3 receptors. Antagonists of platelet LPA receptors might provide a new strategy to prevent thrombus formation in patients with cardiovascular diseases.
    [Abstract] [Full Text] [Related] [New Search]