These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A finite element model for ice ball evolution in a multi-probe cryosurgery.
    Author: Liu Z, Muldrew K, Wan R, Rewcastle J.
    Journal: Comput Methods Biomech Biomed Engin; 2003 Jun; 6(3):197-208. PubMed ID: 12888431.
    Abstract:
    The ice formation in a water body is examined for the computation of temperature field, phase change and a moving ice-water interface whose location is not known á priori. This is classically referred to as the Stefan problem [Rubinstein, L.I. (1971) The Stefan Problem (American Mathematical Society, Providence, Rhode Island 02904]. Based on the Duvaut [Duvaut, G. (1973) "Résolution d'un probléme Stefan" C.R. Acad Sci. Paris 276, 1461-1463] transformation, the governing equations for heat conduction are formulated within a variational principle that is readily amenable to a standard finite element solution without remeshing. Numerical simulation results pertaining to the freezing of tumour tissue in a multi-cryoprobe cryosurgery are presented. These results lend both quantitative and graphical support to the current empirical standards of "effective therapy" in view of refining clinical applications.
    [Abstract] [Full Text] [Related] [New Search]