These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: UUUUUNU stimulation of vaccinia virus early gene transcription termination. Oligonucleotide sequence and structural requirements for stimulation of premature termination in vitro.
    Author: Mohamed MR, Niles EG.
    Journal: J Biol Chem; 2003 Oct 10; 278(41):39534-41. PubMed ID: 12890673.
    Abstract:
    Vaccinia virus early genes are unique in that transcription terminates in a signal- and factor-dependent manner. Recent results from this laboratory demonstrated that a 22-mer RNA oligonucleotide containing a central U9 sequence exhibited sequence- and concentration-dependent stimulation of premature transcription termination and transcript release in trans. In an effort to better understand the different aspects of the U5NU stimulation of premature termination, we evaluated the activity of various oligonucleotides in vitro. Neither RNA containing a mutant U5NU signal nor single-stranded DNA containing T5NT was able to stimulate premature termination, demonstrating both sequence specificity and a requirement for ribose. Furthermore, neither oligonucleotide was able to compete with U5NU, demonstrating that each failed to bind to the U5NU recognition factor. Substitution of the U9 signal with either BrU9 or BrdU9 inhibited normal termination but did not stimulate premature termination. The addition of BrdU5NdU inhibited U5NU stimulation of premature termination, demonstrating that both oligonucleotides bind to the same site on the U5NU recognition factor. Finally, U5NU containing RNA as short as nine bases served as an effective stimulator of premature termination. These observations impact directly on the development of oligonucleotide based anti-poxvirus therapeutic agents.
    [Abstract] [Full Text] [Related] [New Search]