These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A mass spectrometry study of tirapazamine and its metabolites. insights into the mechanism of metabolic transformations and the characterization of reaction intermediates. Author: Zagorevskii D, Song M, Breneman C, Yuan Y, Fuchs T, Gates KS, Greenlief CM. Journal: J Am Soc Mass Spectrom; 2003 Aug; 14(8):881-92. PubMed ID: 12892912. Abstract: Tandem mass spectrometry methods were used to study the sites of protonation and for identification of 3-amino-1,2,4-benzotriazine 1,4-dioxide (1, tirapazamine), and its metabolites (3-amino-1,2,4-benzotriazine 1-oxide (3), 3-amino-1,2,4-benzotriazine 4-oxide (4), 3-amino-1,2,4-benzotriazine (5), and a related isomer 3-amino-1,2,4-benzotriazine 2-oxide (6). Fragmentation pathways of 3 and 5 indicated the 4-N-atom as the most likely site of protonation. Among the N-oxides studied, the 4-oxide (4) showed the highest degree of protonation at the oxygen atom. The differences in collision-induced dissociation of isomeric protonated 1-, 2- and 4-oxides allowed for their identification by LC/MS/MS. Gas phase and liquid phase protonation of tirapazamine occurred exclusively at the oxygen in the 4-position. A loss of OH radical from these ions (2(+)) resulted in ionized 3. Neutralization-reionization mass spectrometry (NR MS) experiments demonstrated the stability of the neutral analogue of protonated tirapazamine in the gas phase in the micro s time-frame. A significant portion of the neutral tirapazamine radicals (2) dissociated by loss of hydroxyl radical during the NR MS event, which indicates that previously proposed mechanisms for redox-activated DNA damage are reasonable. The activation energy for loss of hydroxyl radical from activated tirapazamine (2) was estimated to be approximately 14 kcal mol(-1). Stable neutral analogues of [3 + H](+) and [5 + H](+) ions were also generated in the course of NR MS experiments. Structures of these radicals were assigned to the molecules having an extra hydrogen atom at one of the ring N-atoms. Quantum chemical calculations of protonated 1, 3, 4 and 5 and the corresponding neutrals were performed to assist in the interpretation of experimental results and to help identify their structures.[Abstract] [Full Text] [Related] [New Search]