These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Two distinct coactivators, DRIP/mediator and SRC/p160, are differentially involved in vitamin D receptor transactivation during keratinocyte differentiation.
    Author: Oda Y, Sihlbom C, Chalkley RJ, Huang L, Rachez C, Chang CP, Burlingame AL, Freedman LP, Bikle DD.
    Journal: Mol Endocrinol; 2003 Nov; 17(11):2329-39. PubMed ID: 12893881.
    Abstract:
    Cell programs such as proliferation and differentiation involve the sequential activation and repression of gene expression. Vitamin D, via its active metabolite 1,25-dihydroxyvitamin D [1,25-(OH)2D3)], controls the proliferation and differentiation of a number of cell types, including keratinocytes, by directly regulating transcription. Two classes of coactivators, the vitamin D receptor (VDR)-interacting proteins (DRIP/mediator) and the p160 steroid receptor coactivator family (SRC/p160), control the actions of nuclear hormone receptors, including the VDR. However, the relationship between these two classes of coactivators is not clear. Using glutathione-S-transferase-VDR affinity beads, we have identified the DRIP/mediator complex as the major VDR binding complex in proliferating keratinocytes. After the cells differentiated, members of the SRC/p160 family were identified in the complex but not major DRIP subunits. Both DRIP and SRC proteins were expressed in keratinocytes. DRIP205 expression decreased during differentiation, although SRC-3 levels increased. Both DRIP205 and SRC-3 potentiated vitamin D-induced transcription in proliferating cells, but during differentiation, DRIP205 was no longer effective. These results indicate that these two distinct coactivators are sequentially involved in vitamin D regulation of gene transcription during keratinocyte differentiation, suggesting that these coactivators are part of the means by which the temporal sequence of gene expression is regulated during the differentiation process.
    [Abstract] [Full Text] [Related] [New Search]