These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ca2+-independent protein kinase C signalling in mouse eggs during the early phases of fertilization. Author: Tatone C, Delle Monache S, Francione A, Gioia L, Barboni B, Colonna R. Journal: Int J Dev Biol; 2003 Jun; 47(5):327-33. PubMed ID: 12895027. Abstract: Protein kinase C (PKC), an enzyme playing a central role in signal transduction pathways, is activated in fertilized mouse eggs downstream of the fertilization Ca2+ signal, to regulate different aspects of egg activation. Given the presence of Ca2+-independent PKC isoforms within the egg, we investigated whether fertilization triggers PKC stimulation in mouse eggs by activating Ca2+-independent signalling pathways. An increase in PKC activity was detected as early as 10 min after the beginning of insemination, when about 90% of eggs had fused with sperm and the first Ca2+ rise was evident in most of the eggs. A similar level of activity was found 20 min later, when about 60% of eggs had resumed meiosis. When the Ca2+ increase was buffered by an intracellular Ca2+ chelating agent, PKC stimulation was not blocked but only slightly reduced. Confocal microscopy analysis revealed that the increase in PKC activity at fertilization coincided with the translocation of PKCdelta, a Ca2+-independent and diacylglycerol-dependent PKC isoform, to the meiotic spindle. When, in the absence of the Ca2+ signal, metaphase-anaphase transition was inhibited, PKCdelta moved to the meiotic spindle but still maintained a sustained cytoplasmic distribution. In summary, our results indicate that: 1) PKC activation is an early event of egg activation; 2) both Ca2+-dependent and Ca2+-independent pathways contribute to increased PKC activity at fertilization; 3) PKCdelta is one of the isoforms participating in this signalling process.[Abstract] [Full Text] [Related] [New Search]