These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Sensitivity of the acoustic waveguide biosensor to protein binding as a function of the waveguide properties. Author: Gizeli E, Bender F, Rasmusson A, Saha K, Josse F, Cernosek R. Journal: Biosens Bioelectron; 2003 Oct 01; 18(11):1399-406. PubMed ID: 12896842. Abstract: The aim of this work is to study the effect of operating frequency, piezoelectric substrate and waveguide layer thickness on the sensitivity of the acoustic waveguide sensor during the specific binding of an antibody by a protein. Shear horizontal (SH) wave devices consisting of (a) a LiTaO3 substrate operating at 104 MHz, (b) a quartz substrate operating at 108 MHz and (c) a quartz substrate operating at 155 MHz were coated with a photoresist polymer layer in order to produce acoustic waveguide devices supporting a Love wave. The effect of the thickness of the polymer layer on the Love wave was assessed by measuring the amplitude and phase of the wave before and after coating. The sensitivity of the above three biosensors was compared during the detection of the specific binding of different concentrations of Immunoglobulin G in the range of 0.7-667 nM to a protein A modified surface. Results indicate that the thickness of the polymer guiding layer is critical for obtaining the maximum sensitivity for a given geometry but a trade-off has to be made between the theoretically determined optimum thickness for waveguiding and the device insertion loss. It was also found that increasing the frequency of operation results in a further increase in the device sensitivity to protein detection.[Abstract] [Full Text] [Related] [New Search]