These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of Pb2+ on the transient outward potassium current in acutely dissociated rat hippocampal neurons.
    Author: Yu K, Ge SY, Dai XQ, Ruan DY.
    Journal: Can J Physiol Pharmacol; 2003 Aug; 81(8):825-33. PubMed ID: 12897812.
    Abstract:
    Modulation of the voltage-dependent transient outward potassium current (IA) by Pb2+ was studied in acutely dissociated rat hippocampal pyramidal cells from the CA1 region at postnatal ages 7-14 days using the conventional whole-cell patch-clamp technique. In the presence of different concentrations of external Pb2+, the initial delay and activation time of IA were concentration-dependently lengthened. In particular, the initial delay was even longer in 1 mM Pb2+, showing no signs of saturation. Pb2+ also slowed the inactivation of IA, for decay time constants in the presence of Pb2+ were increased under the same experimental protocols. The activation curves, which were reasonably fitted by a single Boltzmann function, illustrated that Pb2+ increased the voltage threshold of IA and shifted the normalized activation current-voltage curves to more depolarizing voltage commands. Moreover, Pb2+ significantly affected the steady-state inactivation of IA. The application of Pb 2+ made the curves of the steady-state inactivation of IA shift to more depolarizing voltages with little change in the slopes factors. In brief, the results demonstrated that Pb2+ is a dose- and voltage-dependent, reversible blocker of IA currents of hippocampal CA1 neurons. The observations were fitted by the revised "Kuo and Chen type model", which postulates a Pb2+-selective site near the pore of the IA channel and that modulation of the IA channel by Pb2+ is the result of the competitive influences of Pb2+ on opening and inactivating different pathways.
    [Abstract] [Full Text] [Related] [New Search]