These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Comparison of linear, nonlinear, and feature selection methods for EEG signal classification. Author: Garrett D, Peterson DA, Anderson CW, Thaut MH. Journal: IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):141-4. PubMed ID: 12899257. Abstract: The reliable operation of brain-computer interfaces (BCIs) based on spontaneous electroencephalogram (EEG) signals requires accurate classification of multichannel EEG. The design of EEG representations and classifiers for BCI are open research questions whose difficulty stems from the need to extract complex spatial and temporal patterns from noisy multidimensional time series obtained from EEG measurements. The high-dimensional and noisy nature of EEG may limit the advantage of nonlinear classification methods over linear ones. This paper reports the results of a linear (linear discriminant analysis) and two nonlinear classifiers (neural networks and support vector machines) applied to the classification of spontaneous EEG during five mental tasks, showing that nonlinear classifiers produce only slightly better classification results. An approach to feature selection based on genetic algorithms is also presented with preliminary results of application to EEG during finger movement.[Abstract] [Full Text] [Related] [New Search]