These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The role of IGF-1 gene expression abnormality in pathogenesis of diabetic peripheral neuropathy.
    Author: Jianbo L, Chengya W, Jiawei C, Xiaolu L, Zhenqing F, Hongtai M.
    Journal: Chin Med Sci J; 2002 Dec; 17(4):204-9. PubMed ID: 12901506.
    Abstract:
    OBJECTIVE: To explore the role of insulin-like growth factor 1 (IGF-1) gene expression abnormality in neurotrophic causes of diabetic peripheral neurophathy. METHODS: Diabetes was induced in Sprague Dawley rats by alloxan. The parameters were measured as follows: IGF-1 mRNA by revere transcriptase-polymer chain reaction (RT-PCR); IGF-1 peptide by enzyme-linked immunosorbent assay (ELISA); electrophysiological parameters of nerves by evoked electromyogram; morphometric evaluation of sciatic nerves under light microscope and transmission electron microscope. RESULTS: During early diabetic stage, IGF-1 mRNA [(0.430+/-0.031) vs. (0.370+/-0.016), P<0.01, (0.430+/-0.031) vs. (0.280+/-0.010), P<0.001, respectively], IGF-1 peptide contents [(38.44+/-3.60) ng/mg vs. (30.06+/-2.41) ng/mg, P<0.01, (38.44+/-3.6) ng/mg vs. (3.71+/-2.70) ng/mg P<0.001, respectively] in sciatic nerve tissue reduced in diabetic rats with hyperglycemia and varied with severity of state when compared with non-diabetic control rats, and further gradually down-regulated in the diabetic rats with duration of diabetes [IGF-1 mRNA (0.320+/-0.021) to approximately (0.230+/-0.060); IGF-1 peptide (28.80+/-3.30) to approximately (19.51+/-1.80) ng/mg]. Furthermore, they correlated with nerve functional (sensory nerve conduction velocity: r=0.741, P<0.001; amplitude of evoked potential: r=0.716, P<0.001, respectively) and structural abnormality (axonal area r=0.81, P<0.001) of sciatic nerve. No difference was found in the above parameters between diabetic rats with euglycemia and non-diabetic control group. CONCLUSION: IGF-1 gene expression in tissues was down-regulated from early diabetic stage, and varied with the severity and duration of diabetic state. The decrement in IGF-1 level might contribute to the initiation and development of diabetic neuropathy via autocrine or paracrine pathway.
    [Abstract] [Full Text] [Related] [New Search]