These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [Effects of NBP on ATPase and anti-oxidant enzymes activities and lipid peroxidation in transient focal cerebral ischemic rats].
    Author: Dong GX, Feng YP.
    Journal: Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2002 Feb; 24(1):93-7. PubMed ID: 12905849.
    Abstract:
    OBJECTIVE: The aim of the present study was designed to explore the effect of (+/-) -3-n-butylphthalide (NBP) on ATPase, anti-oxidant enzymes activities and lipid peroxidation of mitochondria and cerebral cortex in rats subjected to 24 hours of reperfusion following 2 hours of cerebral ischemia (tMCAO). METHODS: Activities of SOD (Superoxide Dismutase), GSH-Px (glutathione Peroxidase,) and CAT (Catalase), and MDA level of mitochondria or cortex were measured by using biochemical methods in tMCAO rats. RESULTS: (1) The activities of mitochondrial Na+K(+)-ATPase, Ca(2+)-ATPase and Mg2+ ATPase were found to decrease significantly in the vehicle group (ischemia + saline). Pre-treatment with NBP (5, 10, 20 mg/kg, i.p.) 10 min before tMCAO markedly enhanced the activities of Na+K(+)-ATPase and Ca(2+)-ATPase, compared with vehicle group. (2) The activities of SOD and mitochondrial GSH-Px were decreased and MDA level increased in vehicle groups as compared with that in sham group (non-ischemia + saline). NBP (20 mg/kg, i.p.) significantly enhanced total mitochondrial SOD activity, and also enhanced cerebral cortex total SOD activity (in 5, 10, 20 mg/kg groups). However, it had no obvious effect on CuZn-SOD activity. NBP (20 mg/kg i.p.) markedly increased mitochondrial (but not in cerebral cortex) GSH-Px activity; NBP 10, 20 mg/kg markedly decreased mitochondrial MDA level compared with that in vehicle group (P < 0.05). (3) The action of raceme NBP on the increase of the activities of ATPase and antioxidative enzymes seemed to be beneficial than that of (-) -NBP or (+) NBP. CONCLUSION: The results suggest that NBP improves energy pump and subsides oxidative injury which may contribute to its anti-neuronal apoptotic effect.
    [Abstract] [Full Text] [Related] [New Search]