These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inhibition of ATP-sensitive K+ channels by substituted benzo[c]quinolizinium CFTR activators. Author: Prost A, Dérand R, Gros L, Becq F, Vivaudou M. Journal: Biochem Pharmacol; 2003 Aug 01; 66(3):425-30. PubMed ID: 12907241. Abstract: The substituted benzo[c]quinolizinium compounds MPB-07 and MPB-91 are novel activators of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. High homologies between CFTR and the sulfonylurea receptor (SUR), which associates with the potassium channel Kir6.2 to form the ATP-sensitive K(+) (K(ATP)) channel, prompted us to examine possible effects of these compounds on K(ATP) channels using electrophysiological recordings and binding assays. Activity of recombinant K(ATP) channels expressed in Xenopus oocytes was recorded in the inside-out configuration of the patch-clamp technique. Channels were practically unaffected by MPB-07 but were fully blocked by MPB-91 with half-inhibition achieved at approximately 20 microM MPB-91. These effects were similar on channels formed by Kir6.2, and either the SUR1 or SUR2A isoforms were independent of the presence of nucleotides. They were not influenced by SUR mutations known to interfere with its nucleotide-binding capacity. MPB-91, but not MPB-07, was able to displace binding of glibenclamide to HEK cells expressing recombinant SUR1/Kir6.2 channels. Glibenclamide binding to native channels from pancreatic MIN6 cells was also displaced by MPB-91. A Kir6.2 mutant able to form channels without SUR was also blocked by MPB-91, but not by MPB-07. These observations demonstrate that neither MPB-07 nor MPB-91 interact with SUR, in spite of its high homology with CFTR, and that MPB-91 blocks K(ATP) channels by binding to the Kir6.2 subunit. Thus, caution should be exercised when planning to use MPB compounds in cystic fibrosis therapy, specially MPB-91 which could nonetheless find interesting applications as the precursor of a new class of K channel blockers.[Abstract] [Full Text] [Related] [New Search]