These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Salt tolerance-related protein STO binds to a Myb transcription factor homologue and confers salt tolerance in Arabidopsis.
    Author: Nagaoka S, Takano T.
    Journal: J Exp Bot; 2003 Oct; 54(391):2231-7. PubMed ID: 12909688.
    Abstract:
    Regulating the intracellular Na+/K+ ratio is an essential process for salinity tolerance. The yeast mutant, can, which is deficient in calcineurin, can not grow on medium containing Na+ because it is unable to regulate the intracellular Na+/K+ ratio. Expression of the STO gene of Arabidopsis thaliana in the can mutant complements the salt-sensitive phenotype. A protein of Arabidopsis, an H-protein promoter binding factor (HPPBF-1), that binds to STO protein was isolated. HPPBF-1 cDNA has a sequence encoding a Myb DNA binding-motif and its gene expression is induced by salt stress. Furthermore, HPPBF-1 protein is localized in the nucleus. Although, the expression level of STO is not induced under salt-stress conditions, overexpression of STO in a transgenic Arabidopsis plant gave it a higher salt tolerance than was observed in the wild type. When STO transgenic plants and wild-type plants were subjected to salt stress, root growth was increased by 33-70% in the transgenic plants under salt stress. These results suggest that STO is involved in salt-stress responses in Arabidopsis.
    [Abstract] [Full Text] [Related] [New Search]