These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Melatonin and locomotor activity in the fiddler crab Uca pugilator. Author: Tilden AR, Shanahan JK, Khilji ZS, Owen JG, Sterio TW, Thurston KT. Journal: J Exp Zool A Comp Exp Biol; 2003 May 01; 297(1):80-7. PubMed ID: 12911115. Abstract: The influence of melatonin on locomotor activity levels was measured in the fiddler crab Uca pugilator. First, activity in untreated, laboratory-acclimated crabs was measured over 48 hours in a 12L:12D photoperiod; this study showed a nocturnal increase in activity. In eyestalk-ablated crabs, overall activity was significantly reduced, and no significant activity pattern occurred. Next, crabs were injected with melatonin or saline (controls) at various times during the 12L:12D photoperiod (0900h, 1200h, and twice at 2100h; each trial was separated by 3-4 days) and monitored for 3 hr post-injection. Control crabs had low activity during early photophase, high at mid-photophase, increasing activity during the first scotophase trial, and decreasing activity during the second scotophase trial. Melatonin had no significant influence on activity when injected during the early-photophase activity trough or early-scotophase activity decline, but significantly increased activity when injected during the mid-photophase activity peak and early-scotophase activity incline. Next, crabs were injected during an early scotophase activity trough and monitored throughout the twelve-hour scotophase. Melatonin did not increase activity until the mid-scotophase activity increase, approximately 6 hours later, showing that the pharmacological dosage persisted in the crabs' systems and had later effects during the incline and peak of activity but not the trough. Eyestalk-ablated crabs were injected with melatonin or saline during early photo- and scotophase. Melatonin significantly increased activity in the photophase but not the scotophase trial, indicating that the responsiveness to melatonin continues following eyestalk removal, but the timing may not match that of intact crabs. Melatonin may be involved in the transmission of environmental timing information from the eyestalks to locomotor centers in U. pugilator.[Abstract] [Full Text] [Related] [New Search]