These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: TRA-418, a novel compound having both thromboxane A(2) receptor antagonistic and prostaglandin I(2) receptor agonistic activities: its antiplatelet effects in human and animal platelets. Author: Yamada N, Miyamoto M, Isogaya M, Suzuki M, Ikezawa S, Ohno M, Otake A, Umemura K. Journal: J Thromb Haemost; 2003 Aug; 1(8):1813-9. PubMed ID: 12911598. Abstract: TRA-418 is a novel compound that has been found in our screening for compounds having both thromboxane A2 (TP) receptor antagonistic and prostaglandin I2 (IP) receptor agonistic activities. In the binding assays, TRA-418 showed a 10-fold higher affinity to TP-receptors than IP-receptors. TRA-418 inhibited platelet aggregation induced by the TP-receptor agonist, U-46619 and by arachidonic acid at concentrations lower than those required for inhibition of ADP-induced aggregations. Furthermore, TRA-418 inhibited not only platelet aggregation induced by ADP alone, but also that induced by ADP in the presence of the TP-receptor antagonist, SQ-29548. When the IC50 values of TRA-418 for platelet aggregation were estimated in platelet preparations from monkeys, dogs, cats, and rats using ADP and arachidonic acid as the platelet stimulating agents, it was found that the values estimated in monkey platelets were quite similar to those estimated in human platelets. In ex vivo platelet aggregation in monkeys, TRA-418 exhibited significant inhibitory effects on arachidonic acid-induced aggregation in platelet preparations from monkeys treated at 3 micro g kg min-1 or higher doses, where neither a significant decrease in blood pressure nor a significant increase in heart rate was observed. These results are consistent with the fact that TRA-418 has a relatively potent TP-receptor antagonistic activity together with a relatively weak IP-receptor agonistic activity.[Abstract] [Full Text] [Related] [New Search]