These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: After spontaneous hypothermia during hemorrhagic shock, continuing mild hypothermia (34 degrees C) improves early but not late survival in rats. Author: Wu X, Stezoski J, Safar P, Nozari A, Tisherman SA. Journal: J Trauma; 2003 Aug; 55(2):308-16. PubMed ID: 12913642. Abstract: BACKGROUND: Spontaneous hypothermia is common in victims of severe trauma. Laboratory studies have shown benefit of induced (therapeutic) mild hypothermia (34 degrees C) during hemorrhagic shock (HS). Clinical data, however, suggest that hypothermia, which often occurs spontaneously in trauma patients, is detrimental. Because critically ill trauma patients are usually cool, the clinical question, which has not been explored in the laboratory with long-term outcome, is whether maintaining hypothermia or actively rewarming the patient improves outcome. We hypothesized that after spontaneous cooling during HS, continuing mild therapeutic hypothermia during resuscitation is beneficial compared with active rewarming. METHODS: In study A, under light isoflurane anesthesia, 24 Sprague-Dawley rats were bled over 10 minutes to, and maintained at, mean arterial pressure (MAP) of 40 mm Hg until reuptake of 30% of maximal shed blood volume was needed. Rectal temperature (Tr) decreased spontaneously to, and was then maintained at, 35 degrees C during HS. Fluid resuscitation included the remaining shed blood and up to 400 mL/kg of lactated Ringer's solution with 5% dextrose over 4 hours. During resuscitation, three groups (n = 8 each) were studied: normothermia (rapid rewarming to Tr 37.5 degrees C at the beginning of resuscitation); hypothermia-2 h (cooling to Tr 34 degrees C to resuscitation time 2 hours); and hypothermia-12 h (cooling to Tr 34 degrees C to 12 hours). Rats were observed to 72 hours. In study B, more severe HS than in study A was studied. HS was induced with 3 mL/100 g blood withdrawal over 15 minutes followed by maintenance of MAP of 40 mm Hg until 50% of maximal shed blood volume was needed. Two groups (n = 8 each) were studied: normothermia and hypothermia-12 h. Data are presented as mean +/- SD or median (range). RESULTS: In study A, both hypothermia groups had higher MAP and lower heart rates during resuscitation than the normothermia group (p < 0.01). Survival to 72 hours was achieved in three of eight rats in the normothermia group and two of eight in each hypothermia group. Thirteen of 17 deaths occurred after 24 hours. In study B, for resuscitation, the hypothermia group needed less fluid (53 +/- 6 mL vs. 79 +/- 32 mL, p < 0.05), but had higher MAP (p < 0.01), lower heart rate (p < 0.01), and lower lactate level (p = 0.06). All rats died before 72 hours. The hypothermia group had longer survival time (24.5 [13-48.5] hours) than the normothermia group (7.5 [1.5-19] hours) (p = 0.003 by life table analysis). CONCLUSION: After spontaneous cooling during moderately severe HS, mild, controlled hypothermia during resuscitation does not seem to affect long-term survival. After more severe HS, hypothermia increases survival time. Hypothermia supports arterial pressure during resuscitation from severe HS.[Abstract] [Full Text] [Related] [New Search]