These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dynamic cerebral autoregulation remains stable during physical challenge in healthy persons. Author: Brys M, Brown CM, Marthol H, Franta R, Hilz MJ. Journal: Am J Physiol Heart Circ Physiol; 2003 Sep; 285(3):H1048-54. PubMed ID: 12915389. Abstract: The effects of physical activity on cerebral blood flow (CBF) and cerebral autoregulation (CA) have not yet been fully evaluated. There is controversy as to whether increasing heart rate (HR), blood pressure (BP), and sympathetic and metabolic activity with altered levels of CO2 might compromise CBF and CA. To evaluate these effects, we studied middle cerebral artery blood flow velocity (CBFV) and CA in 40 healthy young adults at rest and during increasing levels of physical exercise. We continuously monitored HR, BP, end-expiratory CO2, and CBFV with transcranial Doppler sonography at rest and during stepwise ergometric challenge at 50, 100, and 150 W. The modulation of BP and CBFV in the low-frequency (LF) range (0.04-0.14 Hz) was calculated with an autoregression algorithm. CA was evaluated by calculating the phase shift angle and gain between BP and CBFV oscillations in the LF range. The LF BP-CBFV gain was then normalized by conductance. Cerebrovascular resistance (CVR) was calculated as mean BP adjusted to brain level divided by mean CBFV. HR, BP, CO2, and CBFV increased significantly with exercise. Phase shift angle, absolute and normalized LF BP-CBFV gain, and CVR, however, remained stable. Stable phase shift, LF BP-CBFV gain, and CVR demonstrate that progressive physical exercise does not alter CA despite increasing HR, BP, and CO2. CA seems to compensate for the hemodynamic effects and increasing CO2 levels during exercise.[Abstract] [Full Text] [Related] [New Search]