These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Repair of cranial defects with bone marrow derived mesenchymal stem cells and beta-TCP scaffold in rabbits]. Author: Bo B, Wang CY, Guo XM. Journal: Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2003 Jul; 17(4):335-8. PubMed ID: 12920731. Abstract: OBJECTIVE: To determine whether culture expanded bone marrow derived mesenchymal stem cells (MSCs) in combination with beta-tricalcium phosphate(beta-TCP) can repair critical cranial defects in New Zealand rabbits. METHODS: In group A(n = 20), MSCs from homogeneous rabbits were isolated and expanded in vitro and then implanted onto the pre-molded porous beta-TCP. The MSCs-beta-TCP complexes were implanted into rabbit critical cranial defects. In group B (n = 10), The defects were repaired with beta-TCP only. In group C(n = 4), the defects were left un-repaired. Samples were extracted 6 and 12 weeks after operation for histological, histochemical and immunohistochemical analysis. RESULTS: In group A, bone-like tissue formation could be seen on the surface of the implants. Microscopic analysis demonstrated certain degradation of beta-TCP and extensive new bone filling in rich extracellular matrix after 6 weeks. The cells were stained positively for type I collagen. After 12 weeks, the bioceramics had almost completely degraded and abundant bone formation could be seen in the whole defects. In group B, marginal bone ingrowth was observed after 6 weeks and the number of osteoblasts increased significantly after 12 weeks. However, no new bone formation could be detected in the middle of the material. In group C, only a small quantity of new bone formation was found along the margin of defects. CONCLUSION: Transplantation of MSCs with beta-TCP can serve as an example of a cell-based treatment for bone regeneration in skeletal defects.[Abstract] [Full Text] [Related] [New Search]