These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Comparative assessment of neural networks and regression models for forecasting summertime ozone in Athens.
    Author: Chaloulakou A, Saisana M, Spyrellis N.
    Journal: Sci Total Environ; 2003 Sep 01; 313(1-3):1-13. PubMed ID: 12922056.
    Abstract:
    A comparison study has been performed with neural networks (NNs) and multiple linear regression models to forecast the next day's maximum hourly ozone concentration in the Athens basin at four representative monitoring stations that show very different behavior. All models use 11 predictors (eight meteorological and three persistence variables) and are developed and validated between April and October from 1992 to 1999. Performance results based on a wide set of forecast quality measures indicate that the NNs provide better estimates of ozone concentrations at the monitoring sites, whilst the more often used linear models are less efficient at accurately forecasting high ozone concentrations. The violation of the European information threshold of 180 microg/m(3) is successfully predicted by the NN in 72% of the cases on average. Results at all stations are consistent with similar ozone forecast studies using NNs in other European cities.
    [Abstract] [Full Text] [Related] [New Search]