These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Intrastriatal serotonin 5-HT2 receptors mediate dopamine D1-induced hyperlocomotion in 6-hydroxydopamine-lesioned rats.
    Author: Bishop C, Kamdar DP, Walker PD.
    Journal: Synapse; 2003 Nov; 50(2):164-70. PubMed ID: 12923819.
    Abstract:
    Striatal dopamine (DA) and serotonin (5-HT) functions are altered following DA denervation. Previous research indicates that intrastriatal coadministration of D1 and 5-HT2 receptor agonists synergistically increase locomotor behavior in DA-depleted rats. In the present study, we examined whether striatal 5-HT2 mechanisms also account for supersensitive D1-mediated locomotor behavior following DA denervation. Adult male Sprague-Dawley rats were subjected to bilateral striatal cannulation and then received either intracerebroventricular (i.c.v.) or intrastriatal 6-hydroxydopamine (6-OHDA; 200 microg or 20 microg/side, respectively). After at least 3 weeks, i.c.v.-lesioned rats received intrastriatal infusions of the 5-HT2 receptor antagonist ritanserin (2.0 microg/side) or its vehicle (DMSO) followed by systemic SKF 82958, a D1 agonist (1.0 mg/kg, i.p.) and locomotor activity was monitored. In another experiment, intrastriatal sham and 6-OHDA-lesioned rats received bilateral intrastriatal infusions of ritanserin (2.0 microg/side) or its vehicle (DMSO) followed by intrastriatal infusions of SKF 82958 (5.0 microg/side) or vehicle (0.9% saline). Rats with DA loss demonstrated supersensitive locomotor responses to both systemic and intrastriatal SKF 82958. Ritanserin pretreatment blunted systemic SKF 82958-induced hyperlocomotion and returned intrastriatal D1-mediated hyperactivity to sham lesion levels. The results of this study suggest that striatal 5-HT2 receptors contribute to D1-mediated hyperkinesias resulting from DA loss and suggest a pharmacological target for the alleviation of dyskinesia that can develop with continued DA replacement therapy.
    [Abstract] [Full Text] [Related] [New Search]