These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Glomerular territories in the olfactory bulb from the larval stage of the sea lamprey Petromyzon marinus. Author: Frontini A, Zaidi AU, Hua H, Wolak TP, Greer CA, Kafitz KW, Li W, Zielinski BS. Journal: J Comp Neurol; 2003 Oct 06; 465(1):27-37. PubMed ID: 12926014. Abstract: The goal of this study was to investigate the spatial organization of olfactory glomeruli and of substances relevant to olfactory sensory neuron activity in the developing agnathan, the sea lamprey Petromyzon marinus. A 45-kD protein immunoreactive to G(olf), a cAMP-dependent olfactory G protein, was present in the ciliary fraction of sea lamprey olfactory epithelium and in olfactory sensory neurons of larval and adult sea lampreys. This result implies that G(olf) expression was present during early vertebrate evolution or evolved in parallel in gnathostome and agnathostome vertebrates. Serial sectioning of the olfactory bulb revealed a consistent pattern of olfactory glomeruli stained by GS1B(4) lectin and by anterograde labeling with fluorescent dextran. These glomerular territories included the dorsal cluster, dorsal ring, anterior plexus, lateral chain, medial glomeruli, ventral ring, and ventral cluster. The dorsal, anterior, lateral, and ventral glomeruli contained olfactory sensory axon terminals that were G(olf)-immunoreactive. However, a specific subset, the medial glomeruli, did not display this immunoreactivity. Olfactory glomeruli in the dorsal hemisphere of the olfactory bulb, the dorsal cluster, dorsal ring, anterior plexus, lateral chain, and medial glomeruli, were seen adjacent to 5HT-immunoreactive fibers. However, glomeruli in the ventral hemisphere, the ventral ring, and ventral cluster did not display this association. The presence of specific glomerular territories and discrete glomerular subsets with substances relevant to olfactory sensory neuron activity suggest a spatial organization of information flow in the lamprey olfactory pathway.[Abstract] [Full Text] [Related] [New Search]