These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hydrogen sulfide gas treatment by a chemical-biological process: chemical absorption and biological oxidation steps. Author: Chung YC, Ho KL, Tseng CP. Journal: J Environ Sci Health B; 2003 Sep; 38(5):663-79. PubMed ID: 12929723. Abstract: In order to remove high concentrations of hydrogen sulfide (H2S) gas from anaerobic wastewater treatments in livestock farming, a novel process was evaluated for H2S gas abatement involving the combination of chemical absorption and biological oxidation processes. In this study, the extensive experiments evaluating the removal efficiency, capacity, and removal characteristics of H2S gas by the chemical absorption reactor were conducted in a continuous operation. In addition, the effects of initial Fe2+ concentrations, pH, and glucose concentrations on Fe2+ oxidation by Thiobacillus ferrooxidans CP9 were also examined. The results showed that the chemical process exhibited high removal efficiencies with H2S concentrations up to 300 ppm, and nearly no acclimation time was required. The limitation of mass-transfer was verified as the rate-determining step in the chemical reaction through model validation. The Fe2+ production rate was clearly affected by the inlet gas concentration as well as flow rate and a prediction equation of ferrous production was established. The optimal operating conditions for the biological oxidation process were below pH 2.3 and 35 degrees C in which more than 90% Fe3+ formation ratio was achieved. Interestingly, the optimal glucose concentration in the medium was 0.1%, which favored Fe2+ oxidation and the growth of T. ferrooxidans CP9.[Abstract] [Full Text] [Related] [New Search]