These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A score test for the linkage analysis of qualitative and quantitative traits based on identity by descent data from sib-pairs. Author: Dudoit S, Speed TP. Journal: Biostatistics; 2000 Mar; 1(1):1-26. PubMed ID: 12933522. Abstract: We propose a general likelihood-based approach to the linkage analysis of qualitative and quantitative traits using identity by descent (IBD) data from sib-pairs. We consider the likelihood of IBD data conditional on phenotypes and test the null hypothesis of no linkage between a marker locus and a gene influencing the trait using a score test in the recombination fraction theta between the two loci. This method unifies the linkage analysis of qualitative and quantitative traits into a single inferential framework, yielding a simple and intuitive test statistic. Conditioning on phenotypes avoids unrealistic random sampling assumptions and allows sib-pairs from differing ascertainment mechanisms to be incorporated into a single likelihood analysis. In particular, it allows the selection of sib-pairs based on their trait values and the analysis of only those pairs having the most informative phenotypes. The score test is based on the full likelihood, i.e. the likelihood based on all phenotype data rather than just differences of sib-pair phenotypes. Considering only phenotype differences, as in Haseman and Elston (1972) and Kruglyak and Lander (1995), may result in important losses in power. The linkage score test is derived under general genetic models for the trait, which may include multiple unlinked genes. Population genetic assumptions, such as random mating or linkage equilibrium at the trait loci, are not required. This score test is thus particularly promising for the analysis of complex human traits. The score statistic readily extends to accommodate incomplete IBD data at the test locus, by using the hidden Markov model implemented in the programs MAPMAKER/SIBS and GENEHUNTER (Kruglyak and Lander, 1995; Kruglyak et al., 1996). Preliminary simulation studies indicate that the linkage score test generally matches or outperforms the Haseman-Elston test, the largest gains in power being for selected samples of sib-pairs with extreme phenotypes.[Abstract] [Full Text] [Related] [New Search]