These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Properties of lysophosphatidylcholine acyltransferase from Brassica napus cultures. Author: Furukawa-Stoffer TL, Boyle RM, Thomson AL, Sarna MA, Weselake RJ. Journal: Lipids; 2003 Jun; 38(6):651-6. PubMed ID: 12934675. Abstract: Acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT; EC 2.3.1.23) catalyzes the acyl-CoA-dependent acylation of lysophosphatidylcholine (LPC) to produce PC and CoA. LPCAT activity may affect the incorporation of fatty acyl moieties at the sn-2 position of PC where PUFA are formed and may indirectly influence seed TAG composition. LPCAT activity in microsomes prepared from microspore-derived cell suspension cultures of oilseed rape (Brassica napus L. cv Jet Neuf) was assayed using [1-14C]acyl-CoA as the fatty acyl donor. LPCAT activity was optimal at neutral pH and 35 degrees C, and was inhibited by 50% at a BSA concentration of 3 mg mL(-1). At acyl-CoA concentrations above 20 microM, LPCAT activity was more specific for oleoyl (18:1)-CoA than stearoyl (18:0)- and palmitoyl (16:0)-CoA. Lauroyl (12:0)-CoA, however, was not an effective acyl donor. LPC species containing 12:0, 16:0, 18:0, or 18:1 as the fatty acyl moiety all served as effective acyl acceptors for LPCAT, although 12:0-LPC was somewhat less effective as a substrate at lower concentrations. The failure of LPCAT to catalyze the incorporation of a 12:0 moiety from acyl-CoA into PC is consistent with the tendency of acyltransferases to discriminate against incorporation of this fatty acyl moiety at the sn-2 position of TAG from the seed oil of transgenic B. napus expressing a medium-chain thioesterase.[Abstract] [Full Text] [Related] [New Search]